Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Solving Two-Player General-Sum Games Between Swarms (2310.01682v2)

Published 2 Oct 2023 in cs.MA, cs.GT, and cs.RO

Abstract: Hamilton-Jacobi-Isaacs (HJI) PDEs are the governing equations for the two-player general-sum games. Unlike Reinforcement Learning (RL) methods, which are data-intensive methods for learning value function, learning HJ PDEs provide a guaranteed convergence to the Nash Equilibrium value of the game when it exists. However, a caveat is that solving HJ PDEs becomes intractable when the state dimension increases. To circumvent the curse of dimensionality (CoD), physics-informed machine learning methods with supervision can be used and have been shown to be effective in generating equilibrial policies in two-player general-sum games. In this work, we extend the existing work on agent-level two-player games to a two-player swarm-level game, where two sub-swarms play a general-sum game. We consider the \textit{Kolmogorov forward equation} as the dynamic model for the evolution of the densities of the swarms. Results show that policies generated from the physics-informed neural network (PINN) result in a higher payoff than a Nash Double Deep Q-Network (Nash DDQN) agent and have comparable performance with numerical solvers.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube