NISQ Computers: A Path to Quantum Supremacy (2310.01431v1)
Abstract: The quest for quantum advantage, wherein quantum computers surpass the computational capabilities of classical computers executing state-of-the-art algorithms on well-defined tasks, represents a pivotal race in the domain of quantum computing. NISQ (Noisy Intermediate-Scale Quantum) computing has witnessed remarkable advancements, culminating in significant milestones on the journey towards the realization of universal fault-tolerant quantum computers. This transformative turning point, known as quantum supremacy, has been achieved amid a series of breakthroughs, signifying the dawn of the quantum era. Quantum hardware has undergone substantial integration and architectural evolution, contrasting with its nascent stages. In this review, we critically examine the quantum supremacy experiments conducted thus far, shedding light on their implications and contributions to the evolving landscape of quantum computing. Additionally, we endeavor to illuminate a range of cutting-edge proof-of-principle investigations in the realm of applied quantum computing, providing an insightful overview of the current state of applied quantum research and its prospective influence across diverse scientific, industrial, and technological frontiers.
- David P. DiVincenzo, “The Physical Implementation of Quantum Computation,” Fortschr. Phys. 48, 9-11 (2000).
- D. DeMille, “Quantum Computation with Trapped Polar Molecules,” Phys. Rev. Lett. 88, 067901 (2002).
- Robert Raussendorf, Daniel E. Browne, and Hans J. Briegel, “Measurement-based quantum computation on cluster states,” Phys. Rev. A 68, 022312 (2003).
- Guifré Vidal, “Efficient Classical Simulation of Slightly Entangled Quantum Computations,” Phys. Rev. Lett. 91, 147902 (2003).
- Alexandre Blais, Ren-Shou Huang, Andreas Wallraff, S. M. Girvin, and R. J. Schoelkopf, “Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation,” Phys. Rev. A 69, 062320 (2004).
- Anders Sørensen and Klaus Mølmer, “Quantum Computation with Ions in Thermal Motion,” Phys. Rev. Lett. 82, 1971 (1999).
- S. L. Braunstein, C. M. Caves, R. Jozsa, N. Linden, S. Popescu, and R. Schack, “Separability of Very Noisy Mixed States and Implications for NMR Quantum Computing,” Phys. Rev. Lett. 83, 1054 (1999).
- Paolo Zanardi and Mario Rasetti, “Holonomic quantum computation,” Physics Letters A 264, 2–3 (1999).
- Rutger Vrijen, Eli Yablonovitch, Kang Wang, Hong Wen Jiang, Alex Balandin, Vwani Roychowdhury, Tal Mor, and David DiVincenzo, “Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures,” Phys. Rev. A 62, 012306 (2000).
- D. Kielpinski, C. Monroe, and D. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709–711 (2002). https://doi.org/10.1038/nature00784
- Robert Raussendorf and Hans J. Briegel, “A One-Way Quantum Computer,” Phys. Rev. Lett. 86, 5188 (2001)
- M. Leuenberger and D. Loss, “Quantum computing in molecular magnets,” Nature 410, 789–793 (2001). https://doi.org/10.1038/35071024
- E. Knill, R. Laflamme, and G. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46–52 (2001). https://doi.org/10.1038/35051009
- A. Yu. Kitaev, “Fault-tolerant quantum computation by anyons,” Annals of Physics 203, 2-3 (2003).
- M. A. Nielsen and I. L. Chuang, “Quantum computation and quantum information,” Cambridge University Press, 10th anniversary ed., (2011).
- D. P. DiVincenzo, “Quantum computation,” Science 270, 5234 (1995).
- I. Chuang, “Building the building blocks,” Nat. Phys. 14, 974 (2018).
- R. P. Feynman, “Feynman and Computation. Simulating physics with computers” (Routledge, New York, 2018), pp. 133–153.
- P. Benioff, “The computer as a physical system: a microscopic quantum mechanical hamiltonian model of computers as represented by turing machines,” J. Stat. Phys. 22(5), 563–591 (1980) https://link.springer.com/article/10.1007/BF01011339
- D. Deutsch, R. Jozsa, “Rapid solution of problems by quantum computation,” Proc. R. Soc. Lond. A Math. Phys. Sci. 439(1907), 553–558 (1992).
- D. Deutsch, “Quantum theory, the church–turing principle and the universal quantum computer,” Proc. R. Soc. Lond. A Math. Phys. Sci. 400(1818), 97–117 (1985).
- E. Bernstein, U. Vazirani, “Quantum complexity theory,” SIAM J. Comput. 26(5), 1411–1473 (1997). https://epubs.siam.org/doi/10.1137/S0097539796300921
- D. R. Simon, “On the power of quantum computation,” SIAM J. Comput. 26(5), 1474–1483 (1997). https://ieeexplore.ieee.org/document/365701
- A. W. Harrow, A. Montanaro, “Quantum computational supremacy,” Nature 549(7671), 203–209 (2017). https://www.nature.com/articles/nature23458
- J. Preskill, “Quantum computing and the entanglement frontier,” arXiv preprint arXiv:1203.5813v3 [quant-ph] (2012).
- B.W. Reichardt, “Fault-Tolerant Quantum Computation,” in Encyclopedia of Algorithms, Kao, MY. (eds), Springer, Boston, MA, 2008.
- Alexandru Paler and Simon J. Devitt, “An introduction to Fault-tolerant Quantum Computing,” arXiv:1508.03695v1 [quant-ph], (2015).
- Charles Q. Choi, “The Race to Build a Fault-Tolerant Superconducting Quantum Computer: Amazon, Google, and IBM are all pursuing different strategies to reduce error rates,” IEEE Spectrum, (2022).
- John Preskill, “Quantum Computing in the NISQ era and beyond,” Quantum 2, 79 (2018).
- M. H. Devoret, R. J. Schoelkopf, “Superconducting circuits for quantum information: an outlook,” Science 339(6124), 1169–1174 (2013).
- James S. Clarke, “An Optimist’s View of the 4 Challenges to Quantum Computing,” IEEE Spectrum, (2019).
- D. Franklin, F.T. Chong, “Challenges in Reliable Quantum Computing,” in Nano, Quantum and Molecular Computing, Shukla, S.K., Bahar, R.I. (eds), Springer, Boston, MA, (2004).
- S. Aaronson, A. Arkhipov, “The computational complexity of linear optics,” in Proceedings of the Forty-third Annual ACM Symposium on Theory of Computing, pp. 333–342 (2011). https://doi.org/10.1145/1993636.1993682.
- C. S. Hamilton, R. Kruse, L. Sansoni, S. Barkhofen, C. Silberhorn, I. Jex, “Gaussian boson sampling,” Phys. Rev. Lett. 119(17), 170501 (2017).
- R. Kruse, C. S. Hamilton, L. Sansoni, S. Barkhofen, C. Silberhorn, I. Jex, “Detailed study of gaussian boson sampling,” Phys. Rev. A 100(3), 032326 (2019).
- J. Huh, G. G. Guerreschi, B. Peropadre, J. R. McClean and A. Aspuru-Guzik, “Boson sampling for molecular vibronic spectra,” Nat. Photonics 9, 615–620 (2015).
- J. M. Arrazola and T. R. Bromley, “Using Gaussian boson sampling to find dense subgraphs,” Phys. Rev. Lett. 121, 030503 (2018).
- S. Jahangiri, J. M. Arrazola, N. Quesada and N. Killoran, “Point processes with Gaussian boson sampling,” Phys. Rev. E 101, 022134 (2020).
- L. Banchi, M. Fingerhuth, T. Babej, C. Ing, and J. M. Arrazola, “Molecular docking with Gaussian boson sampling,” Sci. Adv. 6, eaax1950 (2020).
- L. Banchi, N. Quesada and J. M. Arrazola, “Training Gaussian boson sampling distributions,” Phys. Rev. A 102, 012414 (2020).
- S. Jahangiri, J. M. Arrazola, N. Quesada and A. Delgado, “Quantum algorithm for simulating molecular vibrational excitations,” Phys. Chem. Chem. Phys. 22, 25528–25537 (2020).
- Feng Pan, Keyang Chen, and Pan Zhang, “Solving the sampling problem of the Sycamore quantum circuits,” Phys. Rev. Lett. 129, 090502 (2022).
- M. AbuGhanem and H. Eleuch, “Experimental Characterization of Google’s Sycamore Quantum AI on an IBM’s Quantum Computer,” SSRN, http://dx.doi.org/10.2139/ssrn.4299338 (2023).
- M. AbuGhanem and H. Eleuch, “A Quantum State Tomography Study of Google’s Sycamore gate on an IBM’s Quantum Computer,” SSRN, http://dx.doi.org/10.2139/ssrn.4316581 (2023).
- N. Quesada, J. M. Arrazola, N. Killoran, “Gaussian boson sampling using threshold detectors,” Phys. Rev. A 98, 062322 (2018).
- A. Lamas-Linares, J. C. Howell, and D. Bouwmeester, “Stimulated emission of polarization-entangled photons,” Nature 412, 887 (2001).
- Nikitas Stamatopoulos, Daniel J. Egger, Yue Sun, Christa Zoufal, Raban Iten, Ning Shen, and Stefan Woerner. “Option Pricing using Quantum Computers.” Quantum 4, 291 (2020).
- Martin Machin, “Quantum-South unveils enhanced air cargo optimization solutions, harnessing the power of quantum inspired algorithms,” Quantum-South, July 11, 2023.
- Christopher Portmann and Renato Renner, “Security in quantum cryptography,” Rev. Mod. Phys. 94, 025008 (2022).
- Lo, H.-K., Curty, M. and Tamaki, K. “Secure quantum key distribution,” Nat. Photon. 8, 595 (2014).
- Xu, F., Ma, X., Zhang, Q., Lo, H.-K. and Pan, J.-W. “Secure quantum key distribution with realistic devices,” Rev. Mod. Phys. 92, 025002 (2020).
- James Dargan, “5 Crucial Quantum Computing Applications & Examples,” The Quantum Insider, May 24, (2023).
- Alyssa Beniza, “Industry Applications of Quantum Computing,” IEEE Computer Society, (2022).
- I. Goodfellow, Y. Bengio, A. Courville, “Deep Learning,” The MIT Press (2016).
- M. Mohri, A. Rostamizadeh, A. Talwalkar, “Foundations of Machine Learning,” The MIT Press (2018).
- J. Biamonte, P. Wittek, N. Pancotti, P. Rebentrost, N. Wiebe, S. Lloyd, “Quantum machine learning,” Nature 549, 195–202 (2017).
- C. L. Degen, F. Reinhard, P. Cappellaro, “Quantum sensing,” Rev. Mod. Phys. 89, 035002 (2017).
- S. C. Kak, “Quantum neural computing,” Adv. Imaging Electron Phys. 94, 259–313 (1995).
- D. Ventura, T. Martinez, “Quantum associative memory,” Inf. Sci. 124(1-4), 273–296 (2000).
- C. A. Trugenberger, “Quantum pattern recognition,” Quantum Inf. Process. 1(6), 471–493 (2002).
- R. A. Servedio and S. J. Gortler, “Equivalences and separations between quantum and classical learnability,” SIAM J. Comput. 33(5), 1067–1092 (2004).
- R. Schützhold, “Pattern recognition on a quantum computer,” Phys. Rev. A 67(6), 062311 (2003).
- M. Denil and N. De Freitas, “Toward the implementation of a quantum RBM” (2011).
- N. Wiebe, D. Braun and S. Lloyd, “Quantum algorithm for data fitting,” Phys. Rev. Lett. 109(5), 050505 (2012).
- G. Sentís, J. Calsamiglia, R. Munoz-Tapia and E. Bagan, “Quantum learning without quantum memory,” Sci. Rep. 2(1), 1–8 (2012).
- E. Aïmeur, G. Brassard and S. Gambs, “Quantum speed-up for unsupervised learning,” Mach. Learn. 90(2), 261–287 (2013).
- S. Lloyd, M. Mohseni and P. Rebentrost, “Quantum algorithms for supervised and unsupervised machine learning,” arXiv preprint arXiv:1307.0411 (2013).
- N. Wiebe, A. Kapoor and K. M. Svore, “Quantum deep learning,” arXiv preprint arXiv:1412.3489 (2014).
- P. Wittek, “Quantum machine learning: what quantum computing means to data mining” (Academic Press, London, 2014).
- P. Rebentrost, M. Mohseni and S. Lloyd, “Quantum support vector machine for big data classification,” Phys. Rev. Lett. 113(13), 130503 (2014).
- M. I. Jordan and T. M. Mitchell, “Machine learning: trends, perspectives, and prospects,” Science 349(6245), 255–260 (2015).
- Y. LeCun, Y. Bengio, G. Hinton, “Deep learning,” Nature 521(7553), 436–444 (2015).
- S. Aaronson, “Read the fine print,” Nat. Phys. 11(4), 291–293 (2015).
- M. Schuld, I. Sinayskiy, F. Petruccione, “An introduction to quantum machine learning,” Contemp. Phys. 56(2), 172–185 (2015).
- V. Dunjko, J. M. Taylor and H. J. Briegel, “Quantum-enhanced machine learning,” Phys. Rev. Lett. 117(13), 130501 (2016).
- I. Goodfellow, Y. Bengio and A. Courville, “Deep learning” (MIT press, Cambridge, 2016).
- A. Monras, G. Sentís and P. Wittek, “Inductive supervised quantum learning,” Phys. Rev. Lett. 118(19), 190503 (2017).
- E. Farhi and H. Neven, “Classification with quantum neural networks on near term processors,” arXiv preprint arXiv:1802.06002 (2018).
- S. Arunachalam and R. De Wolf, “Optimal quantum sample complexity of learning algorithms,” J. Mach. Learn. Res. 19(1), 2879–2878 (2018).
- M. Schuld and F. Petruccione, “Supervised learning with quantum computers” (Springer, Switzerland, 2018).
- K. Mitarai, T. Yan and K. Fujii, “Generalization of the output of a variational quantum eigensolver by parameter interpolation with a low-depth ansatz,” Phys. Rev. Appl. 11(4), 044087 (2019).
- M. Benedetti, E. Lloyd, S. Sack, M. Fiorentini, “Parameterized quantum circuits as machine learning models,” Quantum Sci. Technol. 4(4), 043001 (2019).
- S. Y. -C. Chen, C. -H. H. Yang, J. Qi, P. -Y. Chen, X. Ma, H. -S. Goan, “Variational quantum circuits for deep reinforcement learning,” IEEE Access. 8, 141007–141024 (2020).
- B. Coyle, D. Mills, V. Danos, E. Kashefi, “The born supremacy: quantum advantage and training of an Ising born machine,” NPJ Quantum Inf. 6(1), 1–11 (2020).
- M. Schuld, A. Bocharov, K. M. Svore, N. Wiebe, “Circuit-centric quantum classifiers,” Phys. Rev. A. 101(3), 032308 (2020).
- Y. Du, M. -H. Hsieh, T. Liu, D. Tao, “Expressive power of parametrized quantum circuits,” Phys. Rev. Res. 2(3), 033125 (2020).
- A. Zlokapa, H. Neven, S. Lloyd, “A quantum algorithm for training wide and deep classical neural networks,” arXiv preprint arXiv:2107.09200 (2021).
- L. Banchi, J. Pereira, S. Pirandola, “Generalization in quantum machine learning: a quantum information standpoint,” PRX Quantum. 2(4), 040321 (2021).
- H. -Y. Huang, R. Kueng, J. Preskill, “Information-theoretic bounds on quantum advantage in machine learning,” Phys. Rev. Lett. 126(19), 190505 (2021).
- Y. Liu, S. Arunachalam, K. Temme, “A rigorous and robust quantum speed-up in supervised machine learning,” Nat. Phys. 17(9), 1013–1017 (2021).
- R. Sweke, J. -P. Seifert, D. Hangleiter, J. Eisert, “On the quantum versus classical learnability of discrete distributions,” Quantum. 5, 417 (2021).
- M. Schuld and N. Killoran, “Is quantum advantage the right goal for quantum machine learning?,” PRX Quantum 3, 030101 (2022).
- IBM, “Exploring quantum use cases for chemicals and petroleum: Changing how chemicals are designed and petroleum is refined,” https://www.ibm.com/downloads/cas/BDGQRXOZ, accessed (2023).
- Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, Jay M. Gambetta, “Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets,” Nature, September 13, 2017. https://www.nature.com/articles/nature23879
- ExxonMobil, “ExxonMobil and IBM to Advance Energy Sector Application of Quantum Computing,” January 8, 2019. https://news.exxonmobil.com/press-release/exxonmobil-and-ibm-advance-energy-sector-application-quantum-computing, accessed 2023.
- M. Motta, E. Ye, J. R. McClean, Z. Li, A. J. Minnich, R. Babbush, G. K. Chan, “Low rank representations for quantum simulation of electronic structure,” NPJ Quantum Inf. 7(1), 1–7 (2021).
- D. W. Berry, C. Gidney, M. Motta, J. R. McClean, R. Babbush, “Qubitization of arbitrary basis quantum chemistry leveraging sparsity and low rank factorization,” Quantum. 3, 208 (2019).
- M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, M. Troyer, “Elucidating reaction mechanisms on quantum computers,” Proc. Natl. Acad. Sci. 114(29), 7555–7560 (2017).
- V. von Burg, G. H. Low, T. Häner, D. S. Steiger, M. Reiher, M. Roetteler, M. Troyer, “Quantum computing enhanced computational catalysis,” Phys. Rev. Res. 3(3), 033055 (2021).
- D. W. Berry, C. Gidney, W. J. Huggins, J. R. McClean, N. Wiebe, R. Babbush, “Even more efficient quantum computations of chemistry through tensor hypercontraction,” PRX Quantum. 2(3), 030305 (2021).
- D. Wecker, M. B. Hastings, N. Wiebe, B. K. Clark, C. Nayak, M. Troyer, “Solving strongly correlated electron models on a quantum computer,” Phys. Rev. A. 92(6), 062318 (2015).
- G. A. Quantum Collaborators, “Hartree-fock on a superconducting qubit quantum computer,” Science. 369(6507), 1084–1089 (2020).
- J. R. McClean, J. Romero, R. Babbush, A. Aspuru-Guzik, “The theory of variational hybrid quantum-classical algorithms,” New J. Phys. 18(2), 023023 (2016).
- C. -K. Lee, J. W. Z. Lau, L. Shi, L. C. Kwek, “Simulating energy transfer in molecular systems with digital quantum computers,” arXiv preprint arXiv:2101.06879 (2021).
- C. K. Lee, P. Patil, S. Zhang, C. Y. Hsieh, “Neural-network variational quantum algorithm for simulating many-body dynamics,” Phys. Rev. Res. 3(2), 023095 (2021).
- J. Olson, Y. Cao, J. Romero, P. Johnson, P. -L. Dallaire-Demers, N. Sawaya, P. Narang, I. Kivlichan, M. Wasielewski, A. Aspuru-Guzik, “Quantum information and computation for chemistry,” arXiv preprint arXiv:1706.05413 (2017).
- P. Hauke, D. Marcos, M. Dalmonte, P. Zoller, “Quantum simulation of a lattice schwinger model in a chain of trapped ions,” Phys. Rev. X. 3(4), 041018 (2013).
- S. Y. -C. Chen, T. -C. Wei, C. Zhang, H. Yu, S. Yoo, “Quantum convolutional neural networks for high energy physics data analysis,” Phys. Rev. Res. 4(1), 013231 (2022).
- N. Klco, A. Roggero, M. J. Savage, “Standard model physics and the digital quantum revolution: thoughts about the interface,” Rep. Prog. Phys. (2022).
- D. -B. Zhang, H. Xing, H. Yan, E. Wang, S. -L. Zhu, “Selected topics of quantum computing for nuclear physics,” Chin. Phys. B. 30(2), 020306 (2021).
- C. P. Koch, “Controlling open quantum systems: tools, achievements, and limitations,” J. Phys. Condens. Matter. 28(21), 213001 (2016).
- K. Barkoutsos, F. Gkritsis, P. J. Ollitrault, I. O. Sokolov, S. Woerner, I. Tavernelli, “Quantum algorithm for alchemical optimization in material design,” Chem. Sci. 12(12), 4345–4352 (2021).
- I. M. Georgescu, S. Ashhab, F. Nori, “Quantum simulation,” Rev. Mod. Phys. 86(1), 153 (2014).
- F. Tacchino, A. Chiesa, S. Carretta, D. Gerace, “Quantum computers as universal quantum simulators: state-of-the-art and perspectives,” Adv. Quantum Technol. 3(3), 1900052 (2020).
- Konstantinos Meichanetzidis, “Quantum Natural Language Processing,” Cambridge Quantum, (2020). https://medium.com/cambridge-quantum-computing/quantum-natural-language-processing-748d6f27b31d.
- B. Coecke, G. de Felice, K. Meichanetzidis, and A. Toumi, “How to make qubits speak,” arXiv preprint arXiv:2107.06776, (2021).
- K. Meichanetzidis, A. Toumi, G. de Felice, and B. Coecke, “Grammar-aware sentence classification on quantum computers,” Quantum Mach. Intell. 5, 10 (2023).
- R. Lorenz, A. Pearson, K. Meichanetzidis, D. Kartsalkis, and B. Coecke, “QNLP in practice: Running compositional models of meaning on a quantum computer,” Journal of Artificial Intelligence Research, 76, 1305-1342,(2023).
- John Russell, “Multiverse, Pasqal, and Crédit Agricole Tout Progress Using Quantum Computing in FS,” HPCwire, (2023).
- M. Sipser, “Introduction to the Theory of Computation,” Course Technology, Boston, ed. 3, (2013).
- E. Farhi, J. Goldstone, S. Gutmann, “A Quantum Approximate Optimization Algorithm,” arXiv:1411.4028 [quant-ph] (2014).
- E. Farhi, J. Goldstone, S. Gutmann, M. Sipser, “Quantum Computation by Adiabatic Evolution,” arXiv:quant-ph/0001106 (2000).
- T. Albash, D. A. Lidar, “Adiabatic quantum computation,” Rev. Mod. Phys. 90, 015002 (2018).
- A. Lucas, “Ising formulations of many NP problems,” Front. Phys. 2, 5 (2014).
- D. Wecker, M. B. Hastings and M. Troyer, “Training a quantum optimizer,” Phys. Rev. A 94, 022309 (2016).
- F. Barahona, “On the computational complexity of Ising spin glass models,” J. Phys. Math. Gen. 15, 3241–3253 (1982).
- V. Bapst, L. Foini, F. Krzakala, G. Semerjian and F. Zamponi, “The quantum adiabatic algorithm applied to random optimization problems: The quantum spin glass perspective,” Phys. Rep. 523, 127–205 (2013).
- A. P. Young, S. Knysh, V. N. Smelyanskiy, “First-Order Phase Transition in the Quantum Adiabatic Algorithm,” Phys. Rev. Lett. 104, 020502 (2010).
- S. Knysh, “Zero-temperature quantum annealing bottlenecks in the spin-glass phase,” Nat. Commun. 7, 12370 (2016).
- H. G. Katzgraber, F. Hamze, Z. Zhu, A. J. Ochoa, H. Munoz-Bauza, “Seeking Quantum Speedup Through Spin Glasses: The Good, the Bad, and the Ugly,” Phys. Rev. X 5, 031026 (2015).
- C.-N. Chou, P. J. Love, J. S. Sandhu, J. Shi, “Limitations of Local Quantum Algorithms on Random Max-k-XOR and Beyond,” arXiv:2108.06049 [quant-ph] (2021).
- E. Farhi, D. Gamarnik, S. Gutmann, “The Quantum Approximate Optimization Algorithm Needs to See the Whole Graph: A Typical Case,” arXiv:2004.09002 [quant-ph] (2020).
- P. Festa, P. M. Pardalos, M. G. Resende, C. C. Ribeiro, “Randomized heuristics for the max-cut problem,” Optim. Methods Softw. 17(6), 1033–1058 (2002).
- L. Zhou, S. -T. Wang, S. Choi, H. Pichler, M. D. Lukin, “Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices,” Phys. Rev. X. 10(2), 021067 (2020).
- S. Bravyi, A. Kliesch, R. Koenig, E. Tang, “Obstacles to variational quantum optimization from symmetry protection,” Phys. Rev. Lett. 125(26), 260505 (2020).
- M. B. Hastings, “Classical and quantum bounded depth approximation algorithms,” arXiv preprint arXiv:1905.07047 (2019).
- G. E. Crooks, “Performance of the quantum approximate optimization algorithm on the maximum cut problem,” arXiv preprint arXiv:1811.08419 (2018).
- P. D. de la Grand’rive, J. -F. Hullo, “Knapsack problem variants of QAOA for battery revenue optimization,” arXiv preprint arXiv:1908.02210 (2019).
- A. Robert, P. K. Barkoutsos, S. Woerner, I. Tavernelli, “Resource-efficient quantum algorithm for protein folding,” NPJ Quantum Inf. 7(1), 1–5 (2021).
- S. A. Metwalli, F. Le Gall, R. Van Meter, “Finding small and large k-clique instances on a quantum computer,” IEEE Trans. Quantum Eng. 1, 1–11 (2020).
- Y. -H. Oh, H. Mohammadbagherpoor, P. Dreher, A. Singh, X. Yu, A. J. Rindos, “Solving multi-coloring combinatorial optimization problems using hybrid quantum algorithms,” arXiv preprint arXiv:1911.00595 (2019).
- Martin Machin, “Improving cargo loading plans by using a hybrid approach with quantum annealers to optimize cargo in the bellyhold of passenger aircraft,” Quantum-South, October 17, 2022.
- Amazon Braket. https://aws.amazon.com/braket, Amazon Braket website. (2023).
- Martin Machin, “Automatic ULD Selection and Ordering,” Quantum-South, July 18, (2023).
- Martin Machin, “Quantum-South identifies alternatives to boost Amerijet International’s Cargo Load Factor by up to 30% with cutting-edge solution,” July 25, 2023.
- A. W. Harrow, A. Hassidim, S. Lloyd, “Quantum algorithm for linear systems of equations,” Phys. Rev. Lett., 103(15), 150502 (2009).
- A. M. Childs, R. Kothari, R. D. Somma, “Quantum algorithm for systems of linear equations with exponentially improved dependence on precision,” SIAM J. Comput., 46(6), 1920–1950 (2017).
- A. Ambainis, “Variable time amplitude amplification and quantum algorithms for linear algebra problems,” in STACS’12 (29th Symposium on Theoretical Aspects of Computer Science), vol. 14, LIPIcs, 636–647 (2012). https://hal.archives-ouvertes.fr/file/index/docid/678197/filename/42.pdf. Accessed (2023).
- C. Bravo-Prieto, R. LaRose, M. Cerezo, Y. Subasi, L. Cincio, P. J. Coles, “Variational quantum linear solver,” arXiv preprint arXiv:1909.05820 (2019).
- J. Wen, X. Kong, S. Wei, B. Wang, T. Xin, G. Long, “Experimental realization of quantum algorithms for a linear system inspired by adiabatic quantum computing,” Phys. Rev. A, 99(1), 012320 (2019).
- X. Xu, J. Sun, S. Endo, Y. Li, S. C. Benjamin, X. Yuan, “Variational algorithms for linear algebra,” Sci. Bull., 66(21), 2181–2188 (2021).
- H. -Y. Huang, K. Bharti, P. Rebentrost, “Near-term quantum algorithms for linear systems of equations with regression loss functions,” New J. Phys., 23(11), 113021 (2021).
- M. Hermann, M. Saravi, “Nonlinear ordinary differential equations,” Springer, Switzerland, 2016.
- M. Lubasch, J. Joo, P. Moinier, M. Kiffner, D. Jaksch, “Variational quantum algorithms for nonlinear problems,” Phys. Rev. A, 101(1), 010301 (2020). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.010301.
- O. Kyriienko, A. E. Paine, V. E. Elfving, “Solving nonlinear differential equations with differentiable quantum circuits,” Phys. Rev. A, 103(5), 052416 (2021).
- F. Yew Leong, W. -B. Ewe, D. Enshan Koh, “Variational quantum evolution equation solver,” arXiv:2204.02912 (2022).
- F. Gaitan, “Finding flows of a Navier–Stokes fluid through quantum computing,” NPJ Quantum Inf., 6(1), 1–6 (2020).
- P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM Rev., 41(2), 303–332 (1999). https://dl.acm.org/doi/10.1137/S0097539795293172.
- C. J. Burges, “Factoring as optimization,” Microsoft Research MSR-TR-200 (2002).
- N. Xu, J. Zhu, D. Lu, X. Zhou, X. Peng, J. Du, “Quantum factorization of 143 on a dipolar-coupling nuclear magnetic resonance system,” Phys. Rev. Lett., 108(13), 130501 (2012).
- N. S. Dattani, N. Bryans, “Quantum factorization of 56153 with only 4 Qubits,” arXiv preprint arXiv:1411.6758 (2014).
- A. H. Karamlou, W. A. Simon, A. Katabarwa, T. L. Scholten, B. Peropadre, Y. Cao, “Analyzing the performance of variational quantum factoring on a superconducting quantum processor,” NPJ Quantum Inf., 7(1), 1–6 (2021).
- T. Haug, K. Bharti, “Generalized quantum assisted simulator,” Quantum Sci. Technol., 7, 045019 (2022).
- Muhammad AbuGhanem (2 papers)
- Hichem Eleuch (40 papers)