Papers
Topics
Authors
Recent
2000 character limit reached

Iterative Semi-Supervised Learning for Abdominal Organs and Tumor Segmentation (2310.01159v1)

Published 2 Oct 2023 in eess.IV, cs.CV, and cs.LG

Abstract: Deep-learning (DL) based methods are playing an important role in the task of abdominal organs and tumors segmentation in CT scans. However, the large requirements of annotated datasets heavily limit its development. The FLARE23 challenge provides a large-scale dataset with both partially and fully annotated data, which also focuses on both segmentation accuracy and computational efficiency. In this study, we propose to use the strategy of Semi-Supervised Learning (SSL) and iterative pseudo labeling to address FLARE23. Initially, a deep model (nn-UNet) trained on datasets with complete organ annotations (about 220 scans) generates pseudo labels for the whole dataset. These pseudo labels are then employed to train a more powerful segmentation model. Employing the FLARE23 dataset, our approach achieves an average DSC score of 89.63% for organs and 46.07% for tumors on online validation leaderboard. For organ segmentation, We obtain 0.9007\% DSC and 0.9493\% NSD. For tumor segmentation, we obtain 0.3785% DSC and 0.2842% NSD. Our code is available at https://github.com/USTguy/Flare23.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.