Papers
Topics
Authors
Recent
2000 character limit reached

SeisT: A foundational deep learning model for earthquake monitoring tasks (2310.01037v3)

Published 2 Oct 2023 in physics.geo-ph and cs.LG

Abstract: Seismograms, the fundamental seismic records, have revolutionized earthquake research and monitoring. Recent advancements in deep learning have further enhanced seismic signal processing, leading to even more precise and effective earthquake monitoring capabilities. This paper introduces a foundational deep learning model, the Seismogram Transformer (SeisT), designed for a variety of earthquake monitoring tasks. SeisT combines multiple modules tailored to different tasks and exhibits impressive out-of-distribution generalization performance, outperforming or matching state-of-the-art models in tasks like earthquake detection, seismic phase picking, first-motion polarity classification, magnitude estimation, back-azimuth estimation, and epicentral distance estimation. The performance scores on the tasks are 0.96, 0.96, 0.68, 0.95, 0.86, 0.55, and 0.81, respectively. The most significant improvements, in comparison to existing models, are observed in phase-P picking, phase-S picking, and magnitude estimation, with gains of 1.7%, 9.5%, and 8.0%, respectively. Our study, through rigorous experiments and evaluations, suggests that SeisT has the potential to contribute to the advancement of seismic signal processing and earthquake research.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.