Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 138 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

How Close are Other Computer Vision Tasks to Deepfake Detection? (2310.00922v1)

Published 2 Oct 2023 in cs.CV

Abstract: In this paper, we challenge the conventional belief that supervised ImageNet-trained models have strong generalizability and are suitable for use as feature extractors in deepfake detection. We present a new measurement, "model separability," for visually and quantitatively assessing a model's raw capacity to separate data in an unsupervised manner. We also present a systematic benchmark for determining the correlation between deepfake detection and other computer vision tasks using pre-trained models. Our analysis shows that pre-trained face recognition models are more closely related to deepfake detection than other models. Additionally, models trained using self-supervised methods are more effective in separation than those trained using supervised methods. After fine-tuning all models on a small deepfake dataset, we found that self-supervised models deliver the best results, but there is a risk of overfitting. Our results provide valuable insights that should help researchers and practitioners develop more effective deepfake detection models.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.