Practical Radar Sensing Using Two Stage Neural Network for Denoising OTFS Signals (2310.00897v2)
Abstract: Our objective is to derive the range and velocity of multiple targets from the delay-Doppler domain for radar sensing using orthogonal time frequency space (OTFS) signaling. Noise contamination affects the performance of OTFS signals in real-world environments, making radar sensing challenging. This work introduces a two-stage approach to tackle this issue. In the first stage, we use a generative adversarial network to denoise the corrupted OTFS samples, significantly improving the data quality. Following this, the denoised signals are passed to a convolutional neural network model to predict the values of the velocities and ranges of multiple targets. The proposed two-stage approach can predict the range and velocity of multiple targets, even in very low signal-to-noise ratio scenarios, with high accuracy and outperforms existing methods.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.