Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Determining the Optimal Number of Clusters for Time Series Datasets with Symbolic Pattern Forest (2310.00820v1)

Published 1 Oct 2023 in cs.LG

Abstract: Clustering algorithms are among the most widely used data mining methods due to their exploratory power and being an initial preprocessing step that paves the way for other techniques. But the problem of calculating the optimal number of clusters (say k) is one of the significant challenges for such methods. The most widely used clustering algorithms like k-means and k-shape in time series data mining also need the ground truth for the number of clusters that need to be generated. In this work, we extended the Symbolic Pattern Forest algorithm, another time series clustering algorithm, to determine the optimal number of clusters for the time series datasets. We used SPF to generate the clusters from the datasets and chose the optimal number of clusters based on the Silhouette Coefficient, a metric used to calculate the goodness of a clustering technique. Silhouette was calculated on both the bag of word vectors and the tf-idf vectors generated from the SAX words of each time series. We tested our approach on the UCR archive datasets, and our experimental results so far showed significant improvement over the baseline.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)