Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 54 tok/s
Gemini 2.5 Flash 140 tok/s Pro
Kimi K2 208 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SEED: Domain-Specific Data Curation With Large Language Models (2310.00749v3)

Published 1 Oct 2023 in cs.DB and cs.LG

Abstract: Data curation tasks that prepare data for analytics are critical for turning data into actionable insights. However, due to the diverse requirements of applications in different domains, generic off-the-shelf tools are typically insufficient. As a result, data scientists often have to develop domain-specific solutions tailored to both the dataset and the task, e.g. writing domain-specific code or training machine learning models on a sufficient number of annotated examples. This process is notoriously difficult and time-consuming. We present SEED, an LLM-as-compiler approach that automatically generates domain-specific data curation solutions via LLMs. Once the user describes a task, input data, and expected output, the SEED compiler produces a hybrid pipeline that combines LLM querying with more cost-effective alternatives, such as vector-based caching, LLM-generated code, and small models trained on LLM-annotated data. SEED features an optimizer that automatically selects from the four LLM-assisted modules and forms a hybrid execution pipeline that best fits the task at hand. To validate this new, revolutionary approach, we conducted experiments on $9$ datasets spanning over $5$ data curation tasks. In comparison to solutions that use the LLM on every data record, SEED achieves state-of-the-art or comparable few-shot performance, while significantly reducing the number of LLM calls.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.