Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Performance evaluation of Machine learning algorithms for Intrusion Detection System (2310.00594v1)

Published 1 Oct 2023 in cs.CR

Abstract: The escalation of hazards to safety and hijacking of digital networks are among the strongest perilous difficulties that must be addressed in the present day. Numerous safety procedures were set up to track and recognize any illicit activity on the network's infrastructure. IDS are the best way to resist and recognize intrusions on internet connections and digital technologies. To classify network traffic as normal or anomalous, Machine Learning (ML) classifiers are increasingly utilized. An IDS with machine learning increases the accuracy with which security attacks are detected. This paper focuses on intrusion detection systems (IDSs) analysis using ML techniques. IDSs utilizing ML techniques are efficient and precise at identifying network assaults. In data with large dimensional spaces, however, the efficacy of these systems degrades. correspondingly, the case is essential to execute a feasible feature removal technique capable of getting rid of characteristics that have little effect on the classification process. In this paper, we analyze the KDD CUP-'99' intrusion detection dataset used for training and validating ML models. Then, we implement ML classifiers such as Logistic Regression, Decision Tree, K-Nearest Neighbour, Naive Bayes, Bernoulli Naive Bayes, Multinomial Naive Bayes, XG-Boost Classifier, Ada-Boost, Random Forest, SVM, Rocchio classifier, Ridge, Passive-Aggressive classifier, ANN besides Perceptron (PPN), the optimal classifiers are determined by comparing the results of Stochastic Gradient Descent and back-propagation neural networks for IDS, Conventional categorization indicators, such as "accuracy, precision, recall, and the f1-measure, have been used to evaluate the performance of the ML classification algorithms.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube