Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 30 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Mapping of Internet "Coastlines" via Large Scale Anonymized Network Source Correlations (2310.00522v1)

Published 30 Sep 2023 in cs.SI

Abstract: Expanding the scientific tools available to protect computer networks can be aided by a deeper understanding of the underlying statistical distributions of network traffic and their potential geometric interpretations. Analyses of large scale network observations provide a unique window into studying those underlying statistics. Newly developed GraphBLAS hypersparse matrices and D4M associative array technologies enable the efficient anonymized analysis of network traffic on the scale of trillions of events. This work analyzes over 100,000,000,000 anonymized packets from the largest Internet telescope (CAIDA) and over 10,000,000 anonymized sources from the largest commercial honeyfarm (GreyNoise). Neither CAIDA nor GreyNoise actively emit Internet traffic and provide distinct observations of unsolicited Internet traffic (primarily botnets and scanners). Analysis of these observations confirms the previously observed Cauchy-like distributions describing temporal correlations between Internet sources. The Gull lighthouse problem is a well-known geometric characterization of the standard Cauchy distribution and motivates a potential geometric interpretation for Internet observations. This work generalizes the Gull lighthouse problem to accommodate larger classes of coastlines, deriving a closed-form solution for the resulting probability distributions, stating and examining the inverse problem of identifying an appropriate coastline given a continuous probability distribution, identifying a geometric heuristic for solving this problem computationally, and applying that heuristic to examine the temporal geometry of different subsets of network observations. Application of this method to the CAIDA and GreyNoise data reveals a several orders of magnitude difference between known benign and other traffic which can lead to potentially novel ways to protect networks.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.