Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Active-Perceptive Motion Generation for Mobile Manipulation (2310.00433v2)

Published 30 Sep 2023 in cs.RO and cs.AI

Abstract: Mobile Manipulation (MoMa) systems incorporate the benefits of mobility and dexterity, due to the enlarged space in which they can move and interact with their environment. However, even when equipped with onboard sensors, e.g., an embodied camera, extracting task-relevant visual information in unstructured and cluttered environments, such as households, remains challenging. In this work, we introduce an active perception pipeline for mobile manipulators to generate motions that are informative toward manipulation tasks, such as grasping in unknown, cluttered scenes. Our proposed approach, ActPerMoMa, generates robot paths in a receding horizon fashion by sampling paths and computing path-wise utilities. These utilities trade-off maximizing the visual Information Gain (IG) for scene reconstruction and the task-oriented objective, e.g., grasp success, by maximizing grasp reachability. We show the efficacy of our method in simulated experiments with a dual-arm TIAGo++ MoMa robot performing mobile grasping in cluttered scenes with obstacles. We empirically analyze the contribution of various utilities and parameters, and compare against representative baselines both with and without active perception objectives. Finally, we demonstrate the transfer of our mobile grasping strategy to the real world, indicating a promising direction for active-perceptive MoMa.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.