Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

CrossDF: Improving Cross-Domain Deepfake Detection with Deep Information Decomposition (2310.00359v3)

Published 30 Sep 2023 in cs.CV

Abstract: Deepfake technology poses a significant threat to security and social trust. Although existing detection methods have shown high performance in identifying forgeries within datasets that use the same deepfake techniques for both training and testing, they suffer from sharp performance degradation when faced with cross-dataset scenarios where unseen deepfake techniques are tested. To address this challenge, we propose a Deep Information Decomposition (DID) framework to enhance the performance of Cross-dataset Deepfake Detection (CrossDF). Unlike most existing deepfake detection methods, our framework prioritizes high-level semantic features over specific visual artifacts. Specifically, it adaptively decomposes facial features into deepfake-related and irrelevant information, only using the intrinsic deepfake-related information for real/fake discrimination. Moreover, it optimizes these two kinds of information to be independent with a de-correlation learning module, thereby enhancing the model's robustness against various irrelevant information changes and generalization ability to unseen forgery methods. Our extensive experimental evaluation and comparison with existing state-of-the-art detection methods validate the effectiveness and superiority of the DID framework on cross-dataset deepfake detection.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube