Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Anomaly Detection in Power Generation Plants with Generative Adversarial Networks (2310.00335v1)

Published 30 Sep 2023 in cs.LG, math.OC, and stat.ML

Abstract: Anomaly detection is a critical task that involves the identification of data points that deviate from a predefined pattern, useful for fraud detection and related activities. Various techniques are employed for anomaly detection, but recent research indicates that deep learning methods, with their ability to discern intricate data patterns, are well-suited for this task. This study explores the use of Generative Adversarial Networks (GANs) for anomaly detection in power generation plants. The dataset used in this investigation comprises fuel consumption records obtained from power generation plants operated by a telecommunications company. The data was initially collected in response to observed irregularities in the fuel consumption patterns of the generating sets situated at the company's base stations. The dataset was divided into anomalous and normal data points based on specific variables, with 64.88% classified as normal and 35.12% as anomalous. An analysis of feature importance, employing the random forest classifier, revealed that Running Time Per Day exhibited the highest relative importance. A GANs model was trained and fine-tuned both with and without data augmentation, with the goal of increasing the dataset size to enhance performance. The generator model consisted of five dense layers using the tanh activation function, while the discriminator comprised six dense layers, each integrated with a dropout layer to prevent overfitting. Following data augmentation, the model achieved an accuracy rate of 98.99%, compared to 66.45% before augmentation. This demonstrates that the model nearly perfectly classified data points into normal and anomalous categories, with the augmented data significantly enhancing the GANs' performance in anomaly detection. Consequently, this study recommends the use of GANs, particularly when using large datasets, for effective anomaly detection.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube