Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 153 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

The Complexity of Distance-$r$ Dominating Set Reconfiguration (2310.00241v2)

Published 30 Sep 2023 in cs.DS and cs.DM

Abstract: For a fixed integer $r \geq 1$, a distance-$r$ dominating set (D$r$DS) of a graph $G = (V, E)$ is a vertex subset $D \subseteq V$ such that every vertex in $V$ is within distance $r$ from some member of $D$. Given two D$r$DSs $D_s, D_t$ of $G$, the Distance-$r$ Dominating Set Reconfiguration (D$r$DSR) problem asks if there is a sequence of D$r$DSs that transforms $D_s$ into $D_t$ (or vice versa) such that each intermediate member is obtained from its predecessor by applying a given reconfiguration rule exactly once. The problem for $r = 1$ has been well-studied in the literature. We consider D$r$DSR for $r \geq 2$ under two well-known reconfiguration rules: Token Jumping ($\mathsf{TJ}$, which involves replacing a member of the current D$r$DS by a non-member) and Token Sliding ($\mathsf{TS}$, which involves replacing a member of the current D$r$DS by an adjacent non-member). It is known that under any of $\mathsf{TS}$ and $\mathsf{TJ}$, the problem on split graphs is $\mathtt{PSPACE}$-complete for $r = 1$. We show that for $r \geq 2$, the problem is in $\mathtt{P}$, resulting in an interesting complexity dichotomy. Along the way, we prove some non-trivial bounds on the length of a shortest reconfiguration sequence on split graphs when $r = 2$ which may be of independent interest. Additionally, we design a linear-time algorithm under $\mathsf{TJ}$ on trees. On the negative side, we show that D$r$DSR for $r \geq 1$ on planar graphs of maximum degree three and bounded bandwidth is $\mathtt{PSPACE}$-complete, improving the degree bound of previously known results. We also show that the known $\mathtt{PSPACE}$-completeness results under $\mathsf{TS}$ and $\mathsf{TJ}$ for $r = 1$ on bipartite graphs and chordal graphs can be extended for $r \geq 2$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.