Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

On the Disconnect Between Theory and Practice of Neural Networks: Limits of the NTK Perspective (2310.00137v2)

Published 29 Sep 2023 in cs.LG and stat.ML

Abstract: The neural tangent kernel (NTK) has garnered significant attention as a theoretical framework for describing the behavior of large-scale neural networks. Kernel methods are theoretically well-understood and as a result enjoy algorithmic benefits, which can be demonstrated to hold in wide synthetic neural network architectures. These advantages include faster optimization, reliable uncertainty quantification and improved continual learning. However, current results quantifying the rate of convergence to the kernel regime suggest that exploiting these benefits requires architectures that are orders of magnitude wider than they are deep. This assumption raises concerns that architectures used in practice do not exhibit behaviors as predicted by the NTK. Here, we supplement previous work on the NTK by empirically investigating whether the limiting regime predicts practically relevant behavior of large-width architectures. Our results demonstrate that this is not the case across multiple domains. This observed disconnect between theory and practice further calls into question to what degree NTK theory should inform architectural and algorithmic choices.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube