Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Tridiagonal matrix decomposition for Hamiltonian simulation on a quantum computer (2310.00121v3)

Published 29 Sep 2023 in quant-ph and cs.ET

Abstract: The construction of quantum circuits to simulate Hamiltonian evolution is central to many quantum algorithms. State-of-the-art circuits are based on oracles whose implementation is often omitted, and the complexity of the algorithm is estimated by counting oracle queries. However, in practical applications, an oracle implementation contributes a large constant factor to the overall complexity of the algorithm. The key finding of this work is the efficient procedure for representation of a tridiagonal matrix in the Pauli basis, which allows one to construct a Hamiltonian evolution circuit without the use of oracles. The procedure represents a general tridiagonal matrix $2n \times 2n$ by systematically determining all Pauli strings present in the decomposition, dividing them into commuting subsets. The efficiency is in the number of commuting subsets $O(n)$. The method is demonstrated using the one-dimensional wave equation, verifying numerically that the gate complexity as function of the number of qubits is lower than the oracle based approach for $n < 15$ and requires half the number of qubits. This method is applicable to other Hamiltonians based on the tridiagonal matrices.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube