Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Latent Space Symmetry Discovery (2310.00105v3)

Published 29 Sep 2023 in cs.LG

Abstract: Equivariant neural networks require explicit knowledge of the symmetry group. Automatic symmetry discovery methods aim to relax this constraint and learn invariance and equivariance from data. However, existing symmetry discovery methods are limited to simple linear symmetries and cannot handle the complexity of real-world data. We propose a novel generative model, Latent LieGAN (LaLiGAN), which can discover symmetries of nonlinear group actions. It learns a mapping from the data space to a latent space where the symmetries become linear and simultaneously discovers symmetries in the latent space. Theoretically, we show that our model can express nonlinear symmetries under some conditions about the group action. Experimentally, we demonstrate that our method can accurately discover the intrinsic symmetry in high-dimensional dynamical systems. LaLiGAN also results in a well-structured latent space that is useful for downstream tasks including equation discovery and long-term forecasting.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: