Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Demographic Parity: Mitigating Biases in Real-World Data (2309.17347v1)

Published 27 Sep 2023 in cs.LG and cs.CY

Abstract: Computer-based decision systems are widely used to automate decisions in many aspects of everyday life, which include sensitive areas like hiring, loaning and even criminal sentencing. A decision pipeline heavily relies on large volumes of historical real-world data for training its models. However, historical training data often contains gender, racial or other biases which are propagated to the trained models influencing computer-based decisions. In this work, we propose a robust methodology that guarantees the removal of unwanted biases while maximally preserving classification utility. Our approach can always achieve this in a model-independent way by deriving from real-world data the asymptotic dataset that uniquely encodes demographic parity and realism. As a proof-of-principle, we deduce from public census records such an asymptotic dataset from which synthetic samples can be generated to train well-established classifiers. Benchmarking the generalization capability of these classifiers trained on our synthetic data, we confirm the absence of any explicit or implicit bias in the computer-aided decision.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube