Papers
Topics
Authors
Recent
2000 character limit reached

Unsupervised Large Language Model Alignment for Information Retrieval via Contrastive Feedback (2309.17078v2)

Published 29 Sep 2023 in cs.IR

Abstract: LLMs have demonstrated remarkable capabilities across various research domains, including the field of Information Retrieval (IR). However, the responses generated by off-the-shelf LLMs tend to be generic, i.e., cannot capture the distinctiveness of each document with similar content. This limits the performance of LLMs in IR because finding and distinguishing relevant documents from substantial similar documents is a typical problem in many IR tasks. To address this issue, we propose an unsupervised alignment method, namely Reinforcement Learning from Contrastive Feedback (RLCF), empowering LLMs to generate both high-quality and context-specific responses. Our approach constructs unsupervised contrastive feedback signals based on similar document groups, and adopts a reward function, named group-wise reciprocal rank, to optimize LLMs within a standard Proximal Policy Optimization. We conduct extensive experiments to evaluate the effectiveness of RLCF on LLMs built with different languages and parameter sizes on multiple downstream IR applications. RLCF significantly outperforms existing alignment methods, and RLCF-optimized LLMs demonstrate considerable improvement in generating responses with distinctiveness.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.