Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 41 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Optimization on the smallest eigenvalue of grounded Laplacian matrix via edge addition (2309.17019v1)

Published 29 Sep 2023 in cs.MA

Abstract: The grounded Laplacian matrix $\LL_{-S}$ of a graph $\calG=(V,E)$ with $n=|V|$ nodes and $m=|E|$ edges is a $(n-s)\times (n-s)$ submatrix of its Laplacian matrix $\LL$, obtained from $\LL$ by deleting rows and columns corresponding to $s=|S| \ll n $ ground nodes forming set $S\subset V$. The smallest eigenvalue of $\LL_{-S}$ plays an important role in various practical scenarios, such as characterizing the convergence rate of leader-follower opinion dynamics, with a larger eigenvalue indicating faster convergence of opinion. In this paper, we study the problem of adding $k \ll n$ edges among all the nonexistent edges forming the candidate edge set $Q = (V\times V)\backslash E$, in order to maximize the smallest eigenvalue of the grounded Laplacian matrix. We show that the objective function of the combinatorial optimization problem is monotone but non-submodular. To solve the problem, we first simplify the problem by restricting the candidate edge set $Q$ to be $(S\times (V\backslash S))\backslash E$, and prove that it has the same optimal solution as the original problem, although the size of set $Q$ is reduced from $O(n2)$ to $O(n)$. Then, we propose two greedy approximation algorithms. One is a simple greedy algorithm with an approximation ratio $(1-e{-\alpha\gamma})/\alpha$ and time complexity $O(kn4)$, where $\gamma$ and $\alpha$ are, respectively, submodularity ratio and curvature, whose bounds are provided for some particular cases. The other is a fast greedy algorithm without approximation guarantee, which has a running time $\tilde{O}(km)$, where $\tilde{O}(\cdot)$ suppresses the ${\rm poly} (\log n)$ factors. Numerous experiments on various real networks are performed to validate the superiority of our algorithms, in terms of effectiveness and efficiency.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.