Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Feature Interaction Aware Automated Data Representation Transformation (2309.17011v2)

Published 29 Sep 2023 in cs.LG

Abstract: Creating an effective representation space is crucial for mitigating the curse of dimensionality, enhancing model generalization, addressing data sparsity, and leveraging classical models more effectively. Recent advancements in automated feature engineering (AutoFE) have made significant progress in addressing various challenges associated with representation learning, issues such as heavy reliance on intensive labor and empirical experiences, lack of explainable explicitness, and inflexible feature space reconstruction embedded into downstream tasks. However, these approaches are constrained by: 1) generation of potentially unintelligible and illogical reconstructed feature spaces, stemming from the neglect of expert-level cognitive processes; 2) lack of systematic exploration, which subsequently results in slower model convergence for identification of optimal feature space. To address these, we introduce an interaction-aware reinforced generation perspective. We redefine feature space reconstruction as a nested process of creating meaningful features and controlling feature set size through selection. We develop a hierarchical reinforcement learning structure with cascading Markov Decision Processes to automate feature and operation selection, as well as feature crossing. By incorporating statistical measures, we reward agents based on the interaction strength between selected features, resulting in intelligent and efficient exploration of the feature space that emulates human decision-making. Extensive experiments are conducted to validate our proposed approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube