Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Discrete-Choice Model with Generalized Additive Utility Network (2309.16970v2)

Published 29 Sep 2023 in cs.AI and cs.LG

Abstract: Discrete-choice models are a powerful framework for analyzing decision-making behavior to provide valuable insights for policymakers and businesses. Multinomial logit models (MNLs) with linear utility functions have been used in practice because they are ease to use and interpretable. Recently, MNLs with neural networks (e.g., ASU-DNN) have been developed, and they have achieved higher prediction accuracy in behavior choice than classical MNLs. However, these models lack interpretability owing to complex structures. We developed utility functions with a novel neural-network architecture based on generalized additive models, named generalized additive utility network ( GAUNet), for discrete-choice models. We evaluated the performance of the MNL with GAUNet using the trip survey data collected in Tokyo. Our models were comparable to ASU-DNN in accuracy and exhibited improved interpretability compared to previous models.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.