Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 10 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4 31 tok/s Pro
2000 character limit reached

Supervised Learning Models for Early Detection of Albuminuria Risk in Type-2 Diabetes Mellitus Patients (2309.16742v4)

Published 28 Sep 2023 in cs.LG, cs.AI, and q-bio.QM

Abstract: Diabetes, especially T2DM, continues to be a significant health problem. One of the major concerns associated with diabetes is the development of its complications. Diabetic nephropathy, one of the chronic complication of diabetes, adversely affects the kidneys, leading to kidney damage. Diagnosing diabetic nephropathy involves considering various criteria, one of which is the presence of a pathologically significant quantity of albumin in urine, known as albuminuria. Thus, early prediction of albuminuria in diabetic patients holds the potential for timely preventive measures. This study aimed to develop a supervised learning model to predict the risk of developing albuminuria in T2DM patients. The selected supervised learning algorithms included Na\"ive Bayes, Support Vector Machine (SVM), decision tree, random forest, AdaBoost, XGBoost, and Multi-Layer Perceptron (MLP). Our private dataset, comprising 184 entries of diabetes complications risk factors, was used to train the algorithms. It consisted of 10 attributes as features and 1 attribute as the target (albuminuria). Upon conducting the experiments, the MLP demonstrated superior performance compared to the other algorithms. It achieved accuracy and f1-score values as high as 0.74 and 0.75, respectively, making it suitable for screening purposes in predicting albuminuria in T2DM. Nonetheless, further studies are warranted to enhance the model's performance.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.