Papers
Topics
Authors
Recent
2000 character limit reached

AIR: Threats of Adversarial Attacks on Deep Learning-Based Information Recovery (2309.16706v1)

Published 17 Aug 2023 in cs.CR, cs.AI, and cs.LG

Abstract: A wireless communications system usually consists of a transmitter which transmits the information and a receiver which recovers the original information from the received distorted signal. Deep learning (DL) has been used to improve the performance of the receiver in complicated channel environments and state-of-the-art (SOTA) performance has been achieved. However, its robustness has not been investigated. In order to evaluate the robustness of DL-based information recovery models under adversarial circumstances, we investigate adversarial attacks on the SOTA DL-based information recovery model, i.e., DeepReceiver. We formulate the problem as an optimization problem with power and peak-to-average power ratio (PAPR) constraints. We design different adversarial attack methods according to the adversary's knowledge of DeepReceiver's model and/or testing samples. Extensive experiments show that the DeepReceiver is vulnerable to the designed attack methods in all of the considered scenarios. Even in the scenario of both model and test sample restricted, the adversary can attack the DeepReceiver and increase its bit error rate (BER) above 10%. It can also be found that the DeepReceiver is vulnerable to adversarial perturbations even with very low power and limited PAPR. These results suggest that defense measures should be taken to enhance the robustness of DeepReceiver.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.