Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Audio-Visual Speaker Verification via Joint Cross-Attention (2309.16569v1)

Published 28 Sep 2023 in cs.SD, cs.CV, cs.MM, and eess.AS

Abstract: Speaker verification has been widely explored using speech signals, which has shown significant improvement using deep models. Recently, there has been a surge in exploring faces and voices as they can offer more complementary and comprehensive information than relying only on a single modality of speech signals. Though current methods in the literature on the fusion of faces and voices have shown improvement over that of individual face or voice modalities, the potential of audio-visual fusion is not fully explored for speaker verification. Most of the existing methods based on audio-visual fusion either rely on score-level fusion or simple feature concatenation. In this work, we have explored cross-modal joint attention to fully leverage the inter-modal complementary information and the intra-modal information for speaker verification. Specifically, we estimate the cross-attention weights based on the correlation between the joint feature presentation and that of the individual feature representations in order to effectively capture both intra-modal as well inter-modal relationships among the faces and voices. We have shown that efficiently leveraging the intra- and inter-modal relationships significantly improves the performance of audio-visual fusion for speaker verification. The performance of the proposed approach has been evaluated on the Voxceleb1 dataset. Results show that the proposed approach can significantly outperform the state-of-the-art methods of audio-visual fusion for speaker verification.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube