Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 54 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 105 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Compositional Program Generation for Few-Shot Systematic Generalization (2309.16467v2)

Published 28 Sep 2023 in cs.LG

Abstract: Compositional generalization is a key ability of humans that enables us to learn new concepts from only a handful examples. Neural machine learning models, including the now ubiquitous Transformers, struggle to generalize in this way, and typically require thousands of examples of a concept during training in order to generalize meaningfully. This difference in ability between humans and artificial neural architectures, motivates this study on a neuro-symbolic architecture called the Compositional Program Generator (CPG). CPG has three key features: \textit{modularity}, \textit{composition}, and \textit{abstraction}, in the form of grammar rules, that enable it to generalize both systematically to new concepts in a few-shot manner, as well as productively by length on various sequence-to-sequence language tasks. For each input, CPG uses a grammar of the input language and a parser to generate a parse in which each grammar rule is assigned its own unique semantic module, a probabilistic copy or substitution program. Instances with the same parse are always processed with the same composed modules, while those with different parses may be processed with different modules. CPG learns parameters for the modules and is able to learn the semantics for new rules and types incrementally, without forgetting or retraining on rules it's already seen. It achieves perfect generalization on both the SCAN and COGS benchmarks using just 14 examples for SCAN and 22 examples for COGS -- state-of-the-art accuracy with a 1000x improvement in sample efficiency.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.