Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Cramér-Rao Bound Estimation with Score-Based Models (2309.16076v3)

Published 28 Sep 2023 in stat.ML, math.ST, and stat.TH

Abstract: The Bayesian Cram\'er-Rao bound (CRB) provides a lower bound on the mean square error of any Bayesian estimator under mild regularity conditions. It can be used to benchmark the performance of statistical estimators, and provides a principled metric for system design and optimization. However, the Bayesian CRB depends on the underlying prior distribution, which is often unknown for many problems of interest. This work introduces a new data-driven estimator for the Bayesian CRB using score matching, i.e., a statistical estimation technique that models the gradient of a probability distribution from a given set of training data. The performance of the proposed estimator is analyzed in both the classical parametric modeling regime and the neural network modeling regime. In both settings, we develop novel non-asymptotic bounds on the score matching error and our Bayesian CRB estimator based on the results from empirical process theory, including classical bounds and recently introduced techniques for characterizing neural networks. We illustrate the performance of the proposed estimator with two application examples: a signal denoising problem and a dynamic phase offset estimation problem in communication systems.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets