Papers
Topics
Authors
Recent
2000 character limit reached

MKRAG: Medical Knowledge Retrieval Augmented Generation for Medical Question Answering (2309.16035v3)

Published 27 Sep 2023 in cs.CL and cs.AI

Abstract: LLMs, although powerful in general domains, often perform poorly on domain-specific tasks such as medical question answering (QA). In addition, LLMs tend to function as "black-boxes", making it challenging to modify their behavior. To address the problem, our work employs a transparent process of retrieval augmented generation (RAG), aiming to improve LLM responses without the need for fine-tuning or retraining. Specifically, we propose a comprehensive retrieval strategy to extract medical facts from an external knowledge base, and then inject them into the LLM's query prompt. Focusing on medical QA, we evaluate the impact of different retrieval models and the number of facts on LLM performance using the MedQA-SMILE dataset. Notably, our retrieval-augmented Vicuna-7B model exhibited an accuracy improvement from 44.46% to 48.54%. This work underscores the potential of RAG to enhance LLM performance, offering a practical approach to mitigate the challenges posed by black-box LLMs.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.