Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Uncertainty-Aware Pseudo-Label Selection Framework using Regularized Conformal Prediction (2309.15963v1)

Published 30 Aug 2023 in cs.LG

Abstract: Consistency regularization-based methods are prevalent in semi-supervised learning (SSL) algorithms due to their exceptional performance. However, they mainly depend on domain-specific data augmentations, which are not usable in domains where data augmentations are less practicable. On the other hand, Pseudo-labeling (PL) is a general and domain-agnostic SSL approach that, unlike consistency regularization-based methods, does not rely on the domain. PL underperforms due to the erroneous high-confidence predictions from poorly calibrated models. This paper proposes an uncertainty-aware pseudo-label selection framework that employs uncertainty sets yielded by the conformal regularization algorithm to fix the poor calibration neural networks, reducing noisy training data. The codes of this work are available at: https://github.com/matinmoezzi/ups conformal classification

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Matin Moezzi (2 papers)

Summary

We haven't generated a summary for this paper yet.