Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Multi-unit soft sensing permits few-shot learning (2309.15828v2)

Published 27 Sep 2023 in stat.ML and cs.LG

Abstract: Recent literature has explored various ways to improve soft sensors by utilizing learning algorithms with transferability. A performance gain is generally attained when knowledge is transferred among strongly related soft sensor learning tasks. A particularly relevant case for transferability is when developing soft sensors of the same type for similar, but physically different processes or units. Then, the data from each unit presents a soft sensor learning task, and it is reasonable to expect strongly related tasks. Applying methods that exploit transferability in this setting leads to what we call multi-unit soft sensing. This paper formulates multi-unit soft sensing as a probabilistic, hierarchical model, which we implement using a deep neural network. The learning capabilities of the model are studied empirically on a large-scale industrial case by developing virtual flow meters (a type of soft sensor) for 80 petroleum wells. We investigate how the model generalizes with the number of wells/units. Interestingly, we demonstrate that multi-unit models learned from data from many wells, permit few-shot learning of virtual flow meters for new wells. Surprisingly, regarding the difficulty of the tasks, few-shot learning on 1-3 data points often leads to high performance on new wells.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (33)
  1. doi:https://doi.org/10.1007/978-1-84628-480-9.
  2. doi:10.1016/j.compchemeng.2008.12.012.
  3. doi:10.1109/JSEN.2020.3033153.
  4. doi:10.1109/TNNLS.2019.2957366.
  5. doi:10.1109/TII.2021.3053128. URL https://ieeexplore.ieee.org/document/9329169/
  6. doi:10.1109/TII.2022.3181692. URL https://ieeexplore.ieee.org/document/9794453/
  7. doi:10.1109/ACCESS.2017.2756872.
  8. arXiv:2107.13822, doi:10.1016/j.ces.2022.117459.
  9. doi:10.3390/app11167710.
  10. doi:10.1016/j.petrol.2019.106487.
  11. doi:10.3390/s19092184.
  12. Schlumberger, Olga dynamic multiphase flow simulator. URL https://www.slb.com/products-and-services/delivering-digital-at-scale/software/olga/olga-dynamic-multiphase-flow-simulator
  13. TechnipFMC, Flowmanager product suite. URL https://www.technipfmc.com/en/what-we-do/subsea/life-of-field-services/field-performance-services/
  14. Petroleum Experts, Prosper multiphase well and pipeline nodal analysis. URL https://www.petex.com/pe-engineering/ipm-suite/prosper/
  15. Kongsberg Digital, Ledaflow multiphase flow simulator. URL https://ledaflow.com/
  16. arXiv:2103.08713, doi:10.1016/j.knosys.2021.107458.
  17. doi:10.1016/j.eswa.2022.118382. URL https://doi.org/10.1016/j.eswa.2022.118382
  18. doi:10.3390/pr9040667.
  19. doi:10.1109/JIOT.2016.2579198.
  20. doi:10.1109/TIM.2023.3267520.
  21. doi:10.1109/TKDE.2009.191.
  22. doi:10.1109/TKDE.2021.3070203.
  23. doi:10.1109/TII.2022.3202909.
  24. doi:10.1109/TNNLS.2021.3085869. URL https://ieeexplore.ieee.org/document/9454563/
  25. doi:10.1016/j.conengprac.2023.105726.
  26. doi:10.1016/j.jprocont.2023.02.003.
  27. doi:10.1016/j.chemolab.2019.103813.
  28. doi:10.1016/j.measurement.2020.108158.
  29. doi:10.1109/TIM.2022.3225056.
  30. doi:10.1038/323533a0.
  31. doi:10.1137/16M1080173.
  32. doi:10.1016/j.asoc.2021.107776.
  33. doi:10.4043/25764-MS.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets