Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 143 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Some Constructions of Private, Efficient, and Optimal $K$-Norm and Elliptic Gaussian Noise (2309.15790v3)

Published 27 Sep 2023 in cs.CR

Abstract: Differentially private computation often begins with a bound on some $d$-dimensional statistic's $\ell_p$ sensitivity. For pure differential privacy, the $K$-norm mechanism can improve on this approach using a norm tailored to the statistic's sensitivity space. Writing down a closed-form description of this optimal norm is often straightforward. However, running the $K$-norm mechanism reduces to uniformly sampling the norm's unit ball; this ball is a $d$-dimensional convex body, so general sampling algorithms can be slow. Turning to concentrated differential privacy, elliptic Gaussian noise offers similar improvement over spherical Gaussian noise. Once the shape of this ellipse is determined, sampling is easy; however, identifying the best such shape may be hard. This paper solves both problems for the simple statistics of sum, count, and vote. For each statistic, we provide a sampler for the optimal $K$-norm mechanism that runs in time $\tilde O(d2)$ and derive a closed-form expression for the optimal shape of elliptic Gaussian noise. The resulting algorithms all yield meaningful accuracy improvements while remaining fast and simple enough to be practical. More broadly, we suggest that problem-specific sensitivity space analysis may be an overlooked tool for private additive noise.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.