Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CAIT: Triple-Win Compression towards High Accuracy, Fast Inference, and Favorable Transferability For ViTs (2309.15755v1)

Published 27 Sep 2023 in cs.CV

Abstract: Vision Transformers (ViTs) have emerged as state-of-the-art models for various vision tasks recently. However, their heavy computation costs remain daunting for resource-limited devices. Consequently, researchers have dedicated themselves to compressing redundant information in ViTs for acceleration. However, they generally sparsely drop redundant image tokens by token pruning or brutally remove channels by channel pruning, leading to a sub-optimal balance between model performance and inference speed. They are also disadvantageous in transferring compressed models to downstream vision tasks that require the spatial structure of images, such as semantic segmentation. To tackle these issues, we propose a joint compression method for ViTs that offers both high accuracy and fast inference speed, while also maintaining favorable transferability to downstream tasks (CAIT). Specifically, we introduce an asymmetric token merging (ATME) strategy to effectively integrate neighboring tokens. It can successfully compress redundant token information while preserving the spatial structure of images. We further employ a consistent dynamic channel pruning (CDCP) strategy to dynamically prune unimportant channels in ViTs. Thanks to CDCP, insignificant channels in multi-head self-attention modules of ViTs can be pruned uniformly, greatly enhancing the model compression. Extensive experiments on benchmark datasets demonstrate that our proposed method can achieve state-of-the-art performance across various ViTs. For example, our pruned DeiT-Tiny and DeiT-Small achieve speedups of 1.7$\times$ and 1.9$\times$, respectively, without accuracy drops on ImageNet. On the ADE20k segmentation dataset, our method can enjoy up to 1.31$\times$ speedups with comparable mIoU. Our code will be publicly available.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube