Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Parallel local time stepping for rigid bodies represented by triangulated meshes (2309.15417v1)

Published 27 Sep 2023 in cs.MS

Abstract: Discrete Element Methods (DEM), i.e.~the simulation of many rigid particles, suffer from very stiff differential equations plus multiscale challenges in space and time. The particles move smoothly through space until they interact almost instantaneously due to collisions. Dense particle packings hence require tiny time step sizes, while free particles can advance with large time steps. Admissible time step sizes can span multiple orders of magnitudes. We propose an adaptive local time stepping algorithm which identifies clusters of particles that can be updated independently, advances them optimistically and independently in time, determines collision time stamps in space-time such that we maximise the time step sizes used, and resolves the momentum exchange implicitly. It is combined with various acceleration techniques which exploit multiscale geometry representations and multiscale behaviour in time. The collision time stamp detection in space-time in combination with the implicit solve of the actual collision equations avoids that particles get locked into tiny time step sizes, the clustering yields a high concurrency level, and the acceleration techniques plus local time stepping avoid unnecessary computations. This brings a scaling, adaptive time stepping for DEM for real-world challenges into reach.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube