Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Local Positional Encoding for Multi-Layer Perceptrons (2309.15101v2)

Published 26 Sep 2023 in cs.GR

Abstract: A multi-layer perceptron (MLP) is a type of neural networks which has a long history of research and has been studied actively recently in computer vision and graphics fields. One of the well-known problems of an MLP is the capability of expressing high-frequency signals from low-dimensional inputs. There are several studies for input encodings to improve the reconstruction quality of an MLP by applying pre-processing against the input data. This paper proposes a novel input encoding method, local positional encoding, which is an extension of positional and grid encodings. Our proposed method combines these two encoding techniques so that a small MLP learns high-frequency signals by using positional encoding with fewer frequencies under the lower resolution of the grid to consider the local position and scale in each grid cell. We demonstrate the effectiveness of our proposed method by applying it to common 2D and 3D regression tasks where it shows higher-quality results compared to positional and grid encodings, and comparable results to hierarchical variants of grid encoding such as multi-resolution grid encoding with equivalent memory footprint.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube