Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 198 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Approximation Rates for Deep Calibration of (Rough) Stochastic Volatility Models (2309.14784v1)

Published 26 Sep 2023 in q-fin.MF, cs.NA, and math.NA

Abstract: We derive quantitative error bounds for deep neural networks (DNNs) approximating option prices on a $d$-dimensional risky asset as functions of the underlying model parameters, payoff parameters and initial conditions. We cover a general class of stochastic volatility models of Markovian nature as well as the rough Bergomi model. In particular, under suitable assumptions we show that option prices can be learned by DNNs up to an arbitrary small error $\varepsilon \in (0,1/2)$ while the network size grows only sub-polynomially in the asset vector dimension $d$ and the reciprocal $\varepsilon{-1}$ of the accuracy. Hence, the approximation does not suffer from the curse of dimensionality. As quantitative approximation results for DNNs applicable in our setting are formulated for functions on compact domains, we first consider the case of the asset price restricted to a compact set, then we extend these results to the general case by using convergence arguments for the option prices.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.