Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

People's Perceptions Toward Bias and Related Concepts in Large Language Models: A Systematic Review (2309.14504v2)

Published 25 Sep 2023 in cs.HC

Abstract: LLMs have brought breakthroughs in tasks including translation, summarization, information retrieval, and language generation, gaining growing interest in the CHI community. Meanwhile, the literature shows researchers' controversial perceptions about the efficacy, ethics, and intellectual abilities of LLMs. However, we do not know how people perceive LLMs that are pervasive in everyday tools, specifically regarding their experience with LLMs around bias, stereotypes, social norms, or safety. In this study, we conducted a systematic review to understand what empirical insights papers have gathered about people's perceptions toward LLMs. From a total of 231 retrieved papers, we full-text reviewed 15 papers that recruited human evaluators to assess their experiences with LLMs. We report different biases and related concepts investigated by these studies, four broader LLM application areas, the evaluators' perceptions toward LLMs' performances including advantages, biases, and conflicting perceptions, factors influencing these perceptions, and concerns about LLM applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.