Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Hierarchical Reinforcement Learning Based on Planning Operators (2309.14237v2)

Published 25 Sep 2023 in cs.RO

Abstract: Long-horizon manipulation tasks such as stacking represent a longstanding challenge in the field of robotic manipulation, particularly when using reinforcement learning (RL) methods which often struggle to learn the correct sequence of actions for achieving these complex goals. To learn this sequence, symbolic planning methods offer a good solution based on high-level reasoning, however, planners often fall short in addressing the low-level control specificity needed for precise execution. This paper introduces a novel framework that integrates symbolic planning with hierarchical RL through the cooperation of high-level operators and low-level policies. Our contribution integrates planning operators (e.g. preconditions and effects) as part of the hierarchical RL algorithm based on the Scheduled Auxiliary Control (SAC-X) method. We developed a dual-purpose high-level operator, which can be used both in holistic planning and as independent, reusable policies. Our approach offers a flexible solution for long-horizon tasks, e.g., stacking a cube. The experimental results show that our proposed method obtained an average of 97.2% success rate for learning and executing the whole stack sequence, and the success rate for learning independent policies, e.g. reach (98.9%), lift (99.7%), stack (85%), etc. The training time is also reduced by 68% when using our proposed approach.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: