Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 172 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Temporal Separators with Deadlines (2309.14185v1)

Published 25 Sep 2023 in cs.DS

Abstract: We study temporal analogues of the Unrestricted Vertex Separator problem from the static world. An $(s,z)$-temporal separator is a set of vertices whose removal disconnects vertex $s$ from vertex $z$ for every time step in a temporal graph. The $(s,z)$-Temporal Separator problem asks to find the minimum size of an $(s,z)$-temporal separator for the given temporal graph. We introduce a generalization of this problem called the $(s,z,t)$-Temporal Separator problem, where the goal is to find a smallest subset of vertices whose removal eliminates all temporal paths from $s$ to $z$ which take less than $t$ time steps. Let $\tau$ denote the number of time steps over which the temporal graph is defined (we consider discrete time steps). We characterize the set of parameters $\tau$ and $t$ when the problem is $\mathcal{NP}$-hard and when it is polynomial time solvable. Then we present a $\tau$-approximation algorithm for the $(s,z)$-Temporal Separator problem and convert it to a $\tau2$-approximation algorithm for the $(s,z,t)$-Temporal Separator problem. We also present an inapproximability lower bound of $\Omega(\ln(n) + \ln(\tau))$ for the $(s,z,t)$-Temporal Separator problem assuming that $\mathcal{NP}\not\subset\mbox{\sc Dtime}(n{\log\log n})$. Then we consider three special families of graphs: (1) graphs of branchwidth at most $2$, (2) graphs $G$ such that the removal of $s$ and $z$ leaves a tree, and (3) graphs of bounded pathwidth. We present polynomial-time algorithms to find a minimum $(s,z,t)$-temporal separator for (1) and (2). As for (3), we show a polynomial-time reduction from the Discrete Segment Covering problem with bounded-length segments to the $(s,z,t)$-Temporal Separator problem where the temporal graph has bounded pathwidth.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube