Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Temporal Separators with Deadlines (2309.14185v1)

Published 25 Sep 2023 in cs.DS

Abstract: We study temporal analogues of the Unrestricted Vertex Separator problem from the static world. An $(s,z)$-temporal separator is a set of vertices whose removal disconnects vertex $s$ from vertex $z$ for every time step in a temporal graph. The $(s,z)$-Temporal Separator problem asks to find the minimum size of an $(s,z)$-temporal separator for the given temporal graph. We introduce a generalization of this problem called the $(s,z,t)$-Temporal Separator problem, where the goal is to find a smallest subset of vertices whose removal eliminates all temporal paths from $s$ to $z$ which take less than $t$ time steps. Let $\tau$ denote the number of time steps over which the temporal graph is defined (we consider discrete time steps). We characterize the set of parameters $\tau$ and $t$ when the problem is $\mathcal{NP}$-hard and when it is polynomial time solvable. Then we present a $\tau$-approximation algorithm for the $(s,z)$-Temporal Separator problem and convert it to a $\tau2$-approximation algorithm for the $(s,z,t)$-Temporal Separator problem. We also present an inapproximability lower bound of $\Omega(\ln(n) + \ln(\tau))$ for the $(s,z,t)$-Temporal Separator problem assuming that $\mathcal{NP}\not\subset\mbox{\sc Dtime}(n{\log\log n})$. Then we consider three special families of graphs: (1) graphs of branchwidth at most $2$, (2) graphs $G$ such that the removal of $s$ and $z$ leaves a tree, and (3) graphs of bounded pathwidth. We present polynomial-time algorithms to find a minimum $(s,z,t)$-temporal separator for (1) and (2). As for (3), we show a polynomial-time reduction from the Discrete Segment Covering problem with bounded-length segments to the $(s,z,t)$-Temporal Separator problem where the temporal graph has bounded pathwidth.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.