Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Traj-LO: In Defense of LiDAR-Only Odometry Using an Effective Continuous-Time Trajectory (2309.13842v1)

Published 25 Sep 2023 in cs.RO and cs.CV

Abstract: LiDAR Odometry is an essential component in many robotic applications. Unlike the mainstreamed approaches that focus on improving the accuracy by the additional inertial sensors, this letter explores the capability of LiDAR-only odometry through a continuous-time perspective. Firstly, the measurements of LiDAR are regarded as streaming points continuously captured at high frequency. Secondly, the LiDAR movement is parameterized by a simple yet effective continuous-time trajectory. Therefore, our proposed Traj-LO approach tries to recover the spatial-temporal consistent movement of LiDAR by tightly coupling the geometric information from LiDAR points and kinematic constraints from trajectory smoothness. This framework is generalized for different kinds of LiDAR as well as multi-LiDAR systems. Extensive experiments on the public datasets demonstrate the robustness and effectiveness of our proposed LiDAR-only approach, even in scenarios where the kinematic state exceeds the IMU's measuring range. Our implementation is open-sourced on GitHub.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Youtube Logo Streamline Icon: https://streamlinehq.com