Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

NSOTree: Neural Survival Oblique Tree (2309.13825v1)

Published 25 Sep 2023 in stat.ML, cs.LG, and stat.ME

Abstract: Survival analysis is a statistical method employed to scrutinize the duration until a specific event of interest transpires, known as time-to-event information characterized by censorship. Recently, deep learning-based methods have dominated this field due to their representational capacity and state-of-the-art performance. However, the black-box nature of the deep neural network hinders its interpretability, which is desired in real-world survival applications but has been largely neglected by previous works. In contrast, conventional tree-based methods are advantageous with respect to interpretability, while consistently grappling with an inability to approximate the global optima due to greedy expansion. In this paper, we leverage the strengths of both neural networks and tree-based methods, capitalizing on their ability to approximate intricate functions while maintaining interpretability. To this end, we propose a Neural Survival Oblique Tree (NSOTree) for survival analysis. Specifically, the NSOTree was derived from the ReLU network and can be easily incorporated into existing survival models in a plug-and-play fashion. Evaluations on both simulated and real survival datasets demonstrated the effectiveness of the proposed method in terms of performance and interpretability.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.