Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 52 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Devil in the Number: Towards Robust Multi-modality Data Filter (2309.13770v1)

Published 24 Sep 2023 in cs.LG and cs.CV

Abstract: In order to appropriately filter multi-modality data sets on a web-scale, it becomes crucial to employ suitable filtering methods to boost performance and reduce training costs. For instance, LAION papers employs the CLIP score filter to select data with CLIP scores surpassing a certain threshold. On the other hand, T-MARS achieves high-quality data filtering by detecting and masking text within images and then filtering by CLIP score. Through analyzing the dataset, we observe a significant proportion of redundant information, such as numbers, present in the textual content. Our experiments on a subset of the data unveil the profound impact of these redundant elements on the CLIP scores. A logical approach would involve reevaluating the CLIP scores after eliminating these influences. Experimentally, our text-based CLIP filter outperforms the top-ranked method on the ``small scale" of DataComp (a data filtering benchmark) on ImageNet distribution shifts, achieving a 3.6% performance improvement. The results also demonstrate that our proposed text-masked filter outperforms the original CLIP score filter when selecting the top 40% of the data. The impact of numbers on CLIP and their handling provide valuable insights for improving the effectiveness of CLIP training, including language rewrite techniques.

Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.