Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Changes-Aware Transformer: Learning Generalized Changes Representation (2309.13619v1)

Published 24 Sep 2023 in cs.CV

Abstract: Difference features obtained by comparing the images of two periods play an indispensable role in the change detection (CD) task. However, a pair of bi-temporal images can exhibit diverse changes, which may cause various difference features. Identifying changed pixels with differ difference features to be the same category is thus a challenge for CD. Most nowadays' methods acquire distinctive difference features in implicit ways like enhancing image representation or supervision information. Nevertheless, informative image features only guarantee object semantics are modeled and can not guarantee that changed pixels have similar semantics in the difference feature space and are distinct from those unchanged ones. In this work, the generalized representation of various changes is learned straightforwardly in the difference feature space, and a novel Changes-Aware Transformer (CAT) for refining difference features is proposed. This generalized representation can perceive which pixels are changed and which are unchanged and further guide the update of pixels' difference features. CAT effectively accomplishes this refinement process through the stacked cosine cross-attention layer and self-attention layer. After refinement, the changed pixels in the difference feature space are closer to each other, which facilitates change detection. In addition, CAT is compatible with various backbone networks and existing CD methods. Experiments on remote sensing CD data set and street scene CD data set show that our method achieves state-of-the-art performance and has excellent generalization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube