Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

DFRD: Data-Free Robustness Distillation for Heterogeneous Federated Learning (2309.13546v2)

Published 24 Sep 2023 in cs.CV and cs.LG

Abstract: Federated Learning (FL) is a privacy-constrained decentralized machine learning paradigm in which clients enable collaborative training without compromising private data. However, how to learn a robust global model in the data-heterogeneous and model-heterogeneous FL scenarios is challenging. To address it, we resort to data-free knowledge distillation to propose a new FL method (namely DFRD). DFRD equips a conditional generator on the server to approximate the training space of the local models uploaded by clients, and systematically investigates its training in terms of fidelity, transferability} and diversity. To overcome the catastrophic forgetting of the global model caused by the distribution shifts of the generator across communication rounds, we maintain an exponential moving average copy of the generator on the server. Additionally, we propose dynamic weighting and label sampling to accurately extract knowledge from local models. Finally, our extensive experiments on various image classification tasks illustrate that DFRD achieves significant performance gains compared to SOTA baselines.

Citations (14)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.