Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
11 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Guided Cooperation in Hierarchical Reinforcement Learning via Model-based Rollout (2309.13508v2)

Published 24 Sep 2023 in cs.LG and cs.AI

Abstract: Goal-conditioned hierarchical reinforcement learning (HRL) presents a promising approach for enabling effective exploration in complex, long-horizon reinforcement learning (RL) tasks through temporal abstraction. Empirically, heightened inter-level communication and coordination can induce more stable and robust policy improvement in hierarchical systems. Yet, most existing goal-conditioned HRL algorithms have primarily focused on the subgoal discovery, neglecting inter-level cooperation. Here, we propose a goal-conditioned HRL framework named Guided Cooperation via Model-based Rollout (GCMR), aiming to bridge inter-layer information synchronization and cooperation by exploiting forward dynamics. Firstly, the GCMR mitigates the state-transition error within off-policy correction via model-based rollout, thereby enhancing sample efficiency. Secondly, to prevent disruption by the unseen subgoals and states, lower-level Q-function gradients are constrained using a gradient penalty with a model-inferred upper bound, leading to a more stable behavioral policy conducive to effective exploration. Thirdly, we propose a one-step rollout-based planning, using higher-level critics to guide the lower-level policy. Specifically, we estimate the value of future states of the lower-level policy using the higher-level critic function, thereby transmitting global task information downwards to avoid local pitfalls. These three critical components in GCMR are expected to facilitate inter-level cooperation significantly. Experimental results demonstrate that incorporating the proposed GCMR framework with a disentangled variant of HIGL, namely ACLG, yields more stable and robust policy improvement compared to various baselines and significantly outperforms previous state-of-the-art algorithms.

Citations (1)

Summary

We haven't generated a summary for this paper yet.