Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Rethinking Social Robot Navigation: Leveraging the Best of Two Worlds (2309.13466v2)

Published 23 Sep 2023 in cs.RO

Abstract: Empowering robots to navigate in a socially compliant manner is essential for the acceptance of robots moving in human-inhabited environments. Previously, roboticists have developed geometric navigation systems with decades of empirical validation to achieve safety and efficiency. However, the many complex factors of social compliance make geometric navigation systems hard to adapt to social situations, where no amount of tuning enables them to be both safe (people are too unpredictable) and efficient (the frozen robot problem). With recent advances in deep learning approaches, the common reaction has been to entirely discard these classical navigation systems and start from scratch, building a completely new learning-based social navigation planner. In this work, we find that this reaction is unnecessarily extreme: using a large-scale real-world social navigation dataset, SCAND, we find that geometric systems can produce trajectory plans that align with the human demonstrations in a large number of social situations. We, therefore, ask if we can rethink the social robot navigation problem by leveraging the advantages of both geometric and learning-based methods. We validate this hybrid paradigm through a proof-of-concept experiment, in which we develop a hybrid planner that switches between geometric and learning-based planning. Our experiments on both SCAND and two physical robots show that the hybrid planner can achieve better social compliance compared to using either the geometric or learning-based approach alone.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.