Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Independent projections of diffusions: Gradient flows for variational inference and optimal mean field approximations (2309.13332v2)

Published 23 Sep 2023 in math.PR, math.AP, and stat.ML

Abstract: What is the optimal way to approximate a high-dimensional diffusion process by one in which the coordinates are independent? This paper presents a construction, called the \emph{independent projection}, which is optimal for two natural criteria. First, when the original diffusion is reversible with invariant measure $\rho_$, the independent projection serves as the Wasserstein gradient flow for the relative entropy $H(\cdot\,|\,\rho_)$ constrained to the space of product measures. This is related to recent Langevin-based sampling schemes proposed in the statistical literature on mean field variational inference. In addition, we provide both qualitative and quantitative results on the long-time convergence of the independent projection, with quantitative results in the log-concave case derived via a new variant of the logarithmic Sobolev inequality. Second, among all processes with independent coordinates, the independent projection is shown to exhibit the slowest growth rate of path-space entropy relative to the original diffusion. This sheds new light on the classical McKean-Vlasov equation and recent variants proposed for non-exchangeable systems, which can be viewed as special cases of the independent projection.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)