Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Independent projections of diffusions: Gradient flows for variational inference and optimal mean field approximations (2309.13332v2)

Published 23 Sep 2023 in math.PR, math.AP, and stat.ML

Abstract: What is the optimal way to approximate a high-dimensional diffusion process by one in which the coordinates are independent? This paper presents a construction, called the \emph{independent projection}, which is optimal for two natural criteria. First, when the original diffusion is reversible with invariant measure $\rho_$, the independent projection serves as the Wasserstein gradient flow for the relative entropy $H(\cdot\,|\,\rho_)$ constrained to the space of product measures. This is related to recent Langevin-based sampling schemes proposed in the statistical literature on mean field variational inference. In addition, we provide both qualitative and quantitative results on the long-time convergence of the independent projection, with quantitative results in the log-concave case derived via a new variant of the logarithmic Sobolev inequality. Second, among all processes with independent coordinates, the independent projection is shown to exhibit the slowest growth rate of path-space entropy relative to the original diffusion. This sheds new light on the classical McKean-Vlasov equation and recent variants proposed for non-exchangeable systems, which can be viewed as special cases of the independent projection.

Citations (6)

Summary

We haven't generated a summary for this paper yet.