Papers
Topics
Authors
Recent
2000 character limit reached

Joint Explainability and Sensitivity-Aware Federated Deep Learning for Transparent 6G RAN Slicing (2309.13325v1)

Published 23 Sep 2023 in cs.NI

Abstract: In recent years, wireless networks are evolving complex, which upsurges the use of zero-touch AI-driven network automation within the telecommunication industry. In particular, network slicing, the most promising technology beyond 5G, would embrace AI models to manage the complex communication network. Besides, it is also essential to build the trustworthiness of the AI black boxes in actual deployment when AI makes complex resource management and anomaly detection. Inspired by closed-loop automation and Explainable Artificial intelligence (XAI), we design an Explainable Federated deep learning (FDL) model to predict per-slice RAN dropped traffic probability while jointly considering the sensitivity and explainability-aware metrics as constraints in such non-IID setup. In precise, we quantitatively validate the faithfulness of the explanations via the so-called attribution-based \emph{log-odds metric} that is included as a constraint in the run-time FL optimization task. Simulation results confirm its superiority over an unconstrained integrated-gradient (IG) \emph{post-hoc} FDL baseline.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.