Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 89 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Approximating Queries on Probabilistic Graphs (2309.13287v6)

Published 23 Sep 2023 in cs.DB and cs.DS

Abstract: Query evaluation over probabilistic databases is notoriously intractable -- not only in combined complexity, but often in data complexity as well. This motivates the study of approximation algorithms, and particularly of combined FPRASes, with runtime polynomial in both the query and instance size. In this paper, we focus on tuple-independent probabilistic databases over binary signatures, i.e., probabilistic graphs, and study when we can devise combined FPRASes for probabilistic query evaluation. We settle the complexity of this problem for a variety of query and instance classes, by proving both approximability results and (conditional) inapproximability results doubled with (unconditional) DNNF provenance circuit size lower bounds. This allows us to deduce many corollaries of possible independent interest. For example, we show how the results of Arenas et al. on counting fixed-length strings accepted by an NFA imply the existence of an FPRAS for the two-terminal network reliability problem on directed acyclic graphs, a question asked by Zenklusen and Laumanns. We also show that one cannot extend a recent result of van Bremen and Meel giving a combined FPRAS for self-join-free conjunctive queries of bounded hypertree width on probabilistic databases: neither the bounded-hypertree-width condition nor the self-join-freeness hypothesis can be relaxed. We last show how our methods can give insights on the evaluation and approximability of regular path queries (RPQs) on probabilistic graphs in the data complexity perspective, showing in particular that some of them are (conditionally) inapproximable.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.