Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Natural Language Processing for Requirements Formalization: How to Derive New Approaches? (2309.13272v1)

Published 23 Sep 2023 in cs.SE and cs.CL

Abstract: It is a long-standing desire of industry and research to automate the software development and testing process as much as possible. In this process, requirements engineering (RE) plays a fundamental role for all other steps that build on it. Model-based design and testing methods have been developed to handle the growing complexity and variability of software systems. However, major effort is still required to create specification models from a large set of functional requirements provided in natural language. Numerous approaches based on NLP have been proposed in the literature to generate requirements models using mainly syntactic properties. Recent advances in NLP show that semantic quantities can also be identified and used to provide better assistance in the requirements formalization process. In this work, we present and discuss principal ideas and state-of-the-art methodologies from the field of NLP in order to guide the readers on how to create a set of rules and methods for the semi-automated formalization of requirements according to their specific use case and needs. We discuss two different approaches in detail and highlight the iterative development of rule sets. The requirements models are represented in a human- and machine-readable format in the form of pseudocode. The presented methods are demonstrated on two industrial use cases from the automotive and railway domains. It shows that using current pre-trained NLP models requires less effort to create a set of rules and can be easily adapted to specific use cases and domains. In addition, findings and shortcomings of this research area are highlighted and an outlook on possible future developments is given.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube