Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Being Aware of Localization Accuracy By Generating Predicted-IoU-Guided Quality Scores (2309.13269v1)

Published 23 Sep 2023 in cs.CV and cs.AI

Abstract: Localization Quality Estimation (LQE) helps to improve detection performance as it benefits post processing through jointly considering classification score and localization accuracy. In this perspective, for further leveraging the close relationship between localization accuracy and IoU (Intersection-Over-Union), and for depressing those inconsistent predictions, we designed an elegant LQE branch to acquire localization quality score guided by predicted IoU. Distinctly, for alleviating the inconsistency of classification score and localization quality during training and inference, under which some predictions with low classification scores but high LQE scores will impair the performance, instead of separately and independently setting, we embedded LQE branch into classification branch, producing a joint classification-localization-quality representation. Then a novel one stage detector termed CLQ is proposed. Extensive experiments show that CLQ achieves state-of-the-arts' performance at an accuracy of 47.8 AP and a speed of 11.5 fps with ResNeXt-101 as backbone on COCO test-dev. Finally, we extend CLQ to ATSS, producing a reliable 1.2 AP gain, showing our model's strong adaptability and scalability. Codes are released at https://github.com/PanffeeReal/CLQ.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.